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Elastic effects in disordered nematic networks

Nariya Uchida
Department of Physics, Kyoto University, Kyoto 606, Japan

~Received 23 February 1999!

Elastic effects in a model of disordered nematic elastomers are numerically investigated in two dimensions.
Networks crosslinked in the isotropic phase exhibit an unusual soft mechanical response against stretching. It
arises from a gradual alignment of orientationally correlated regions that are elongated along the director. A
sharp crossover to a macroscopically aligned state is obtained on further stretching. The effect of random
internal stress is also discussed.@S1063-651X~99!50107-4#

PACS number~s!: 61.30.Cz, 61.41.1e, 64.70.Md
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Nematic elastomers and gels exhibit rich mechanical
fects due to elasticity-orientation coupling@1,2#. While a
considerable number of theoretical studies has been dire
to homogeneous systems, nematic elastomers are often
highly nonuniform polydomain state, in which the correl
tion length for the director orientation is typically of micro
scales. Polydomain networks show unusual nonlinear ela
response against stretching@3–8#, often with an extremely
low stress over a sizable interval of strain. As the strain
increased, the directors gradually rotate toward the direc
of stretching until a macroscopically aligned state is attain
This structural change is called the polydomain-monodom
~P-M! transition. Attempting to describe the presumab
equilibrium polydomain textures, Terentjev and co-worke
@9–11# proposed a random-field model analogous to th
for random anisotropy magnets. They argued that crossl
ers of anisotropic shapes act as sources of quenched diso
On the other hand, the mechanical response is not yet
understood. It is known that elasticity-mediated long-ran
interactions among spatial inhomogeneities are crucia
systems such as metallic alloys@12,13# and gels@14#. For
polydomain networks, the role of elastic interactions amo
orientationally correlated regions~‘‘domains’’! is yet to be
clarified. In this Rapid Communication, we numerically i
vestigate the mechanical response and the domain stru
of model nematic networks incorporating both rubber el
ticity and quenched random anisotropy. Unusual soft
sponse is obtained and is explained in terms of the ela
interaction. We briefly discuss the effect of random inter
stress as another kind of quenched disorder that can de
long-range orientational order@15#.

The total free energy of our model system is of the fo
F5Fel1FR1FF , whereFel , FR , andFF are, respectively,
the rubber-elastic, random disorder, and Frank contributio
We assume networks brought deep into the nematic ph
after crosslinking in the isotropic phase, and apply the affi
deformation theory of nematic rubber elasticity due
Warneret al. @16#. ThenFel is written in terms of the sym-
metric deformation tensorWi j 5(]r i /]r k

0)(]r j /]r k
0), where

r i
0 and r i are the Cartesian coordinates of the material po

at the moment of crosslinking and after deformation, resp
tively. Summation over repeated indices is implied throug
out unless otherwise stated. It is convenient to rewrite
original form of Fel @16#, using the tensorQi j 5ninj
2d i j /d, wheren is the director, to obtain@17#
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Fel5
m

2E dr~Wii 2aQi j Wi j !. ~1!

The dimensionless coupling constanta(.0) is determined
by chain anisotropy and does not exceedd/(d21). The
modulusm is given bykBT multiplied by the crosslink num-
ber density and a numerical prefactor (;1), which weakly
depends on the temperature. We consider the incompres
limit and impose the constraint detW51. The disorder free
energy is assumed in the form given in@9–11#, and is rewrit-
ten as

FR5E drPi j Qi j , ~2!

wherePi j is a symmetric, traceless, Gaussian random ten
with vanishing quenched average (^Pi j (r)&50) and with
variance

^Pi j ~q!Pi 8 j 8~2q!&5US d i i 8d j j 81d i j 8d j i 82
2

d
d i j d i 8 j 8D .

~3!

For the Frank free energy we assume the form

FF5
K

2E dr~“n!2. ~4!

Here we treat the two-dimensional case for numerical a
analytical advantages. Then, in the absence of elasticity,
model reduces to the random-anisotropyXY model by re-
garding the unit vectorm5(2Qxx,2Qxy)5(cos 2u,sin2u) as
the spin variable, whereu is the director orientation define
by n5(cosu,sinu). We consider deformations of the form
r i5l i r i

01ui ~assuming no summation!, where lx5l and
ly51/l express the average deformation, andu5u(r) is the
internal displacement. Cooling into the nematic phase te
to induce spontaneous elongation along the director@1,2#. If
the directors are uniformly aligned along thex axis, the elas-
tic free energy~1! is minimized atl5lm andu50 with

lm5S 11a/2

12a/2D
1/4

. ~5!

On the other hand, if there is no macroscopic deformation
l51, the ground state is polydomain. Our questions conc
R13 ©1999 The American Physical Society
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how domains spontaneously deform and to what degree
elastic free energy is reduced in such a highly nonunifo
state.

The mechanical response was numerically simulated
varying the macroscopic strainl and minimizing the free
energy with respect ton and u. We solved the Langevin
equation for the director,

]n

]t
5~ I2nn!•S 2L

dF

dn
1hD , ~6!

on a lattice. Hereh is an uncorrelated Gaussian therm
noise introduced to facilitate structural evolution. Witho
the noise the minimization process would stop at one of
local minima close to the initial configuration. After ap
proaching the global minimum we turned off the noise
explained below. The displacementu was determined by
solving the nonlinear equationd(Fel1Fv)/du50 with a re-
laxation method, whereFv is an artificial free energy func
tional of u, which penalizes volume change. With th
method the local volume was kept constant with errors be
1% throughout the runs. Periodic boundary conditions w
imposed onn and u. The simulation was performed on
1282 square lattice with the grid sizeDx51. We setK54
andU51 for all of the runs, whereasm anda were varied
for different runs. In each run the external strainl was
slowly increased after an initial equilibration stage atl51.
Occasionally, we stopped the increase ofl and turned off the
thermal noise for an interval of time. Thus a single run co
sisted of alternating periods of annealing~with increasing
strain! and quenching. In each quench period we compu
the spatially averaged free energy densityf 5 f el1 f R1 f F
and the orientationS5^2Qxx&5^cos 2u&. This procedure en-
abled us to approximately minimize the free energy at
merous values ofl in reasonable computational time. For
further check, we then decreasedl back from a large value
in a similar manner. A small hysteresis was obtained bu
does not affect the description below.

FIG. 1. Top, dimensionless total stressm21] f /]l; bottom, ori-
entation S5^2Qxx&5^cos 2u&. Cases with different coupling
strengthsa50.2,0.4,0.6,0.8 from left to right are compared wit
ma254 fixed. The arrows indicate the corresponding values oflm .
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In Fig. 1 we show the strain-stress and strain-orientat
relations for several values ofa with ma254 fixed. In both
curves we can see a sharp crossover aroundl5lm(a). Be-
low lm the total stress] f /]l is vanishingly small and
slightly positive. The average orientation increases alm
linearly in the same region. The free energy densities
plotted in Fig. 2. The elastic free energy has a slightly ne
tive slope in the regionl,lm , while the disorder free en
ergy has a positive slope and makes the total stress slig
positive. We chose the parameters so that the Frank co
bution is much smaller thanma2, which is considered to be
the case in typical experiments. We also studied a few ca
with stronger or weaker elastic effects. For larger values
ma2 the shapes of the strain-elastic stress and str
orientation curves were almost unchanged. For cases
ma2&0.2, these two curves exhibited less sharp crossov

In order to discuss the origin of the soft response it
useful to examine the structure of the polydomain state
l51, for which an analytical treatment is possible in t
weak coupling casea!1. We expand DFel5Fel@u#
2Fel@0# with respect to“u to obtain

DFel5mE drF1

4 S ]ui

]r j
1

]uj

]r i
D 2

2aQi j

]ui

]r j
G . ~7!

Eliminating the elastic field using the conditions of mecha
cal equilibrium dDFel /du50 and incompressibility“•u
50, we have a nonlocal elastic interaction among orien
tional inhomogeneities. We define new variablesQ1(r) and
Q2(r) through their Fourier transforms,

Q1~q!5sin~2w!Qxx~q!2cos~2w!Qxy~q!, ~8!

Q2~q!5cos~2w!Qxx~q!1sin~2w!Qxy~q!, ~9!

where w is the azimuthal angle of the wave vectorq
5q(cosw,sinw). Then the average free energy density rea
@17#

f elul515mS 12
a2

2
^Q1

2& D ~10!

to ordera2. Note thatQ1 and Q2 satisfy ^Q1
21Q2

2&5^Qxx
2

1Qxy
2 &51/4. In the absence of the elastic coupling we ha

FIG. 2. Free energy densities forma254 anda50.4. The total
free energy in the polydomain regime has a positive but small sl
due to the disorder contribution. The valuem is subtracted from the
elastic free energy density.
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^Q1
2&5^Q2

2&51/8. In its present asymmetry,̂Q1
2&.^Q2

2&
arises to reduce the elastic free energy~10!. In the elasticity-
dominated limit wherema2 is much larger than the disorde
and the Frank free energy densities, we expect^Q1

2&→1/4,
^Q2

2&→0, and f elul51→m(12a2/8). Indeed these are nu
merically confirmed as shown in the next paragraph. On
other hand, the elastic free energy density under the unif
deformation withl5lm is also given bym(12a2/8) to
ordera2. Thus, in the above limit, the P-M transition accom
panies only a small change of ordera3 in the elastic free
energy. To see how each domain is deformed atl51, we
consider the local elastic stress, which is given ass i j
5m(] iuj1] jui2aQi j ) from Eq. ~7!. After some calcula-
tion, its variance in the mechanical equilibrium is obtained

^s i j
2 &52m2a2^Q2

2&. ~11!

In the elasticity-dominated limit, the variance of the quant
m21s i j 5] iuj1] jui2aQi j vanishes due to the factor^Q2

2&
in Eq. ~11!, which means that each part of the system
elongated by 11a/4 (.lm) times along the local director
This, together with the numerical result on the mechan
response, supports the following simple picture: In the po
domain state each domain is uniaxially elongated bylm
times along the local director, and thus the elastic free ene
is equal to that for the monodomain state atl5lm ~Fig. 3!.
The P-M transition in the region 1,l,lm proceeds via
rotation of domains and does not change the elastic free
ergy.

Next we present numerical results on the polydom
structure atl51, which was studied through the correlatio
functionG(r )52^Qi j (r)Qi j (0)& and the degree of structura
asymmetryA5^Q1

2&2^Q2
2&. To accelerate the computatio

of the elastic field we assumed a weak couplinga50.1, and
solveddDFel /du50 under the constraint“•u50 using fast
Fourier transform instead of the relaxation method abo
The amplitude of the thermal noise was set constant in
initial stage and then gradually reduced to zero at a cons
rate. The correlation function is computed for the final st
and averaged over 20 independent runs for each set o
rameters. Runs were sufficiently long to insure that the ini
configurations with uniform and random orientations gi
indistinguishable results forG(r ). Shown in Figs. 4 and 5
are the correlation function and the correlation lengthR de-
fined byG(R)/G(0)51/2. The elastic coupling increases th
correlation length without qualitatively affecting the form

FIG. 3. Schematic illustration of the P-M transition. The ellips
represent domains under spontaneous deformations~from circles at
the moment of crosslinking!, and the arrows in them indicate th
local director orientations. The transition from polydomain atl
51 ~left! to monodomain atl5lm ~right! does not change the
elastic free energy if every domain is elongated bylm times along
the local director.
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the correlation function. We could not deduce a quantitat
decay law forG(r ) from the relatively small number o
samples, but the decay was slightly faster than exponen
near the origin. For the nonelastic case the same feature
obtained in the Monte Carlo simulation by Gingras and Hu
@18# in the presence of thermal noise, while Yuet al. @11#
obtained exponential decay using free boundary conditio
Another important factor affectingG(r ) is the disorder
strength. More systematic study of the decay law is left
future work. In Fig. 5 the degree of asymmetryA is also
shown. With increasing the magnitude of the elastic inter
tion it approaches to the upper limit 1/4 as expected.

Finally we discuss the effect of random internal stre
arising from microscopic heterogeneities in the netwo
structure, which are intrinsic to gels@19#. We restrict our
discussion to the casel51 with small internal deformations
In the expansion of the elastic free energy with respec
“u, there will arise an additional term,

DFel,R5E drRi j

]ui

]r j
, ~12!

where Ri j is the Gaussian random stress with^Ri j (r)&50
and with

FIG. 4. Correlation functionsG(r ) as a function of the scaled
distancer /R. It is insensitive to the elastic interaction. Inset, sem
logarithmic plot.

FIG. 5. Top, correlation lengthR; bottom, structural asymmetry
A5^Q1

2&2^Q2
2&.
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^Ri j ~q!Ri 8 j 8~2q!&5V1d i j d i 8 j 81V2~d i i 8d j j 81d i j 8d j i 8!.
~13!

Eliminating the elastic field fromDFel1DFel,R we have a
new interaction terma*drR1

SQ1, whereR1
S is defined using

the shear componentRi j
S5Ri j 2Rkkd i j /d by an equation par-

allel to Eq.~8! as

R1
S~q!5sin~2w!Rxx

S ~q!2cos~2w!Rxy
S ~q!. ~14!

Treating this interaction as a weak perturbation as in@20#, we
can see that it renders the equilibrium correlation length
nite even in the absence of the disorder free energy~3!. We
mention that Golubovic´ and Lubensky@15# discussed an-
other mechanism of long-range–orientational-order break
due to random stress. Their argument is based on the ob
vation that the amplitude of thermal fluctuations around
uniformly aligned state diverges. Its relevance to the pres
case of nematic networks is limited in that their free ene
r-

l.

ao

nd

n,

r-
-

g
er-
a
nt
y

does not explicitly include the orientational degree of fre
dom.

To summarize, we have numerically obtained a soft m
chanical reponse during the P-M transition. It originates fro
structural self-organization of domains due to the long-ran
elastic interaction, and should be distinguished from the s
elasticity @2,21# of uniformly oriented networks. The elasti
contribution to the stress is slightly negative in the transit
region. We have found a positive disorder contribution to
stress. The elastic interaction is found to increase the co
lation length. We have demonstrated that random inter
stress acts as a random field on the director. Further exp
mental and theoretical studies are necessary to examin
relevance to real polydomain textures.
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