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Elastic effects in disordered nematic networks
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Elastic effects in a model of disordered nematic elastomers are numerically investigated in two dimensions.
Networks crosslinked in the isotropic phase exhibit an unusual soft mechanical response against stretching. It
arises from a gradual alignment of orientationally correlated regions that are elongated along the director. A
sharp crossover to a macroscopically aligned state is obtained on further stretching. The effect of random
internal stress is also discuss¢81063-651X99)50107-4

PACS numbds): 61.30.Cz, 61.4%:e, 64.70.Md

Nematic elastomers and gels exhibit rich mechanical ef- w
fects due to elasticity-orientation couplifg,2]. While a Fe|=§f dr(Wij — aQ;;W;j). (1)
considerable number of theoretical studies has been directed
to homogeneous systems, nematic elastomers are often inTge dimensionless coupling constant>0) is determined
highly nonuniform polydomain state, in which the correla- by chain anisotropy and does not excedt{d—1). The
tion length for the_d|rector orientation is typically _of micron modulusw is given bykg T multiplied by the crosslink num-
scales. Polydomain networks show unusual nonlinear elastiger density and a numerical prefactor {), which weakly
response against stretchipg—8g|, often with an extremely depends on the temperature. We consider the incompressible
low stress over a sizable interval of strain. As the strain igjmit and impose the constraint d&t=1. The disorder free

increased, the directors gradually rotate toward the directiognergy is assumed in the form given[®-11], and is rewrit-
of stretching until a macroscopically aligned state is attainediep, a5

This structural change is called the polydomain-monodomain

(P-M) transition. Attempting to describe the presumably

equilibrium polydomain textures, Terentjev and co-workers FR:J drP;; Qjj 2
[9-11] proposed a random-field model analogous to those

for random anisotropy magnets. They argued that crosslinkwhereP;; is a symmetric, traceless, Gaussian random tensor
ers of anisotropic shapes act as sources of quenched disordefith vanishing quenched averagépP(;(r))=0) and with

On the other hand, the mechanical response is not yet wellariance

understood. It is known that elasticity-mediated long-range 2
interactions among spatial inhomogeneities are crucial in - o -y s c o
systems such as metallic alloy$2,13 and gels[14]. For (Pij(@Pirj( q))—U( it 0jjr + 0ij1 0jir = 4 0ij Oy
polydomain networks, the role of elastic interactions among 3
orientationally correlated region§domains”) is yet to be
clarified. In this Rapid Communication, we numerically in-
vestigate the mechanical response and the domain structure K

of model nematic networks incorporating both rubber elas- FF:—I dr(Vn)2. (4)
ticity and quenched random anisotropy. Unusual soft re- 2

sponse is obtained and is explained in terms of the elastic o e e treat the two-dimensional case for numerical and

interaction. We brie_fly discuss the effect of random imemalanalytical advantages. Then, in the absence of elasticity, our
stress as another kind of quenched disorder that can destroy,ya| reduces to the random-anisotragy model by re-

long-range orientational ordét5]. : - _ _ .
. garding the unit vectom=(2Q;,2Q,) = (cos X,sin20) as
The total free energy of our model system is of the formthe spin variable, wheré is the director orientation defined

F:Fe'+FR+FF.' whereF, .FR’ andFe are, respectl_vely, by n=(cosé,sind). We consider deformations of the form
the rubber-elastic, random disorder, and Frank contributions.”_, o, | (assuming no summatipnwherex =\ and
We assume networks brought deep into the nematic phasé :1'/)'\ eerJress the average deformation a:rq:dux(r) i< the

after crosslmkmg in the |sotrop|_c phase, and appl_y the aﬁc'neinternal displacement. Cooling into the nematic phase tends
deformation theory of nematic rubber elasticity due to

Warneret al.[16]. ThenF,, is written in terms of the sym- to induce spontaneous elongation along the diredied). If

. - the directors are uniformly aligned along tkexis, the elas-
metric deformation tensoW,; = (ar;/drg)(ar;/arg), where y &ld 9

. . , ._tic free energy(1) is minimized at\ =\, andu=0 with
r? andr; are the Cartesian coordinates of the material point oD m

at the moment of crosslinking and after deformation, respec-
tively. Summation over repeated indices is implied through- Am
out unless otherwise stated. It is convenient to rewrite the
original form of F.; [16], using the tensorQ;;=n;n; On the other hand, if there is no macroscopic deformation, or
— &j;/d, wheren is the director, to obtaifl7] N=1, the ground state is polydomain. Our questions concern

For the Frank free energy we assume the form

1+ af2\ 14

1-al2
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FIG. 2. Free energy densities far®=4 anda=0.4. The total
free energy in the polydomain regime has a positive but small slope
strain ) due to the disorder contribution. The valuds subtracted from the
elastic free energy density.

FIG. 1. Top, dimensionless total stregs *df/ax; bottom, ori- ) ) . )
entation S=(2Q,,)=(cos¥). Cases with different coupling In Fig. 1 we show the strain-stress and strain-orientation

strengthsa=0.2,0.4,0.6,0.8 from left to right are compared with relations for several values of with wa®=4 fixed. In both
wa?=4 fixed. The arrows indicate the corresponding values,pf ~ curves we can see a sharp crossover around ,(«). Be-
low A, the total stressdf/d\ is vanishingly small and
how domains spontaneously deform and to what degree th@ightly positive. The average orientation increases almost
elastic free energy is reduced in such a highly nonunifornfinearly in the same region. The free energy densities are
state. plotted in Fig. 2. The elastic free energy has a slightly nega-
The mechanical response was numerically simulated bjive slope in the regiom <Ar,, while the disorder free en-
varying the macroscopic straim and minimizing the free €rgy has a positive slope and makes the total stress slightly
energy with respect tm and u. We solved the Langevin Positive. We chose the parameters so that the Frank contri-

equation for the director, bution is much smaller thape?, which is considered to be
the case in typical experiments. We also studied a few cases
an SF with stronger or weaker elastic effects. For larger values of
i (I=nn)- ( —-L 5n + 7]) (6) wa? the shapes of the strain-elastic stress and strain-

orientation curves were almost unchanged. For cases with
l,uaZS 0.2, these two curves exhibited less sharp crossovers.

on a lattice. Heren is an uncorrelated Gaussian therma In order to discuss the origin of the soft response it is

noise !ntroduceq o faqlltate structural evolution. Without useful to examine the structure of the polydomain state at
the noise the minimization process would stop at one of thg\zl, for which an analytical treatment is possible in the

local kr}r.nnm;ﬁ CI?SS Ito Fh.e initial C?nf'guéa“f?qh Aﬁer ar- weak coupling casea<<l. We expand AF,=F¢[u]
proaching the global minimum we turned off the noise as_ F.[0] with respect toVu to obtain

explained below. The displacementwas determined by
solving the nonlinear equatiof(F,+ F,)/du=0 with a re-
laxation method, wher€, is an artificial free energy func- AFeFMf dr
tional of u, which penalizes volume change. With this

method the local volume was kept constant with errors belovEliminating the elastic field using the conditions of mechani-
1% throughout the runs. Periodic boundary conditions wergal equilibrium SAF,;/éu=0 and incompressibilityV - u
imposed onn and u. The simulation was performed on a =0, we have a nonlocal elastic interaction among orienta-
12& square lattice with the grid sizéx=1. We setKk=4  tional inhomogeneities. We define new variab@gr) and
andU=1 for all of the runs, whereag anda were varied Q,(r) through their Fourier transforms,

for different runs. In each run the external strainwas

2 dU;
—a ija_rj

. (7

1 du; (?U]
4
4 &rl ar;

slowly increased after an initial equilibration stage\at 1. Q1(q) =siN(2¢) Qux(d) — oK 2¢) Qxy (0, ®
Occasionally, we stopped the increase afnd turned off the _ )
thermal noise for an interval of time. Thus a single run con- Q2(0) =08 2¢) Qux(Q) +5IN(2¢) Qyy(0), ©)

sisted of alternating periods of annealifgith increasing | here ¢ is the azimuthal angle of the wave vectqr

strain and quenching. In each quench period we computed. ;,-ose.sine). Then the average free enerav density reads
the spatially averaged free energy dendity fq+fg+fg [1%( #:SiNg). g 9y y

and the orientatio®=(2Q,,)=(cos ). This procedure en-

abled us to approximately minimize the free energy at nu-

merous values ok in reasonable computational time. For a fellh-1=u
further check, we then decreaskedack from a large value

in a similar manner. A small hysteresis was obtained but ito order?. Note thatQ, and Q, satisfy (Q?+ Q3)=(Q2,
does not affect the description below. +Q§y):1/4. In the absence of the elastic coupling we have

a2
1- 7<Q§>) (10
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FIG. 3. Schematic illustration of the P-M transition. The ellipses
represent domains under spontaneous deformatfoms circles at
the moment of crosslinking and the arrows in them indicate the
local director orientations. The transition from polydomainat
=1 (left) to monodomain at =\, (right) does not change the
elastic free energy if every domain is elongated\pytimes along
the local director. FIG. 4. Correlation function&(r) as a function of the scaled

distancer/R. It is insensitive to the elastic interaction. Inset, semi-
(Q3)=(Q3)=1/8. In its present asymmetry,Q%)>(Q3) logarithmic plot.
arises to reduce the elastic free enet§)y)). In the elasticity-
dominated limit whergua? is much larger than the disorder the correlation function. We could not deduce a quantitative
and the Frank free energy densities, we exg€})—1/4,  decay law forG(r) from the relatively small number of
<Q§>—>0, andf|,-1—u(1—a?8). Indeed these are nu- samples, but the decay was slightly faster than exponential
merically confirmed as shown in the next paragraph. On tha@ear the origin. For the nonelastic case the same feature was
other hand, the elastic free energy density under the uniformbtained in the Monte Carlo simulation by Gingras and Huse
deformation withA=X\_, is also given byu(1—a?/8) to  [18] in the presence of thermal noise, while ¥tal. [11]
ordera?. Thus, in the above limit, the P-M transition accom- obtained exponential decay using free boundary conditions.
panies only a small change of ordef in the elastic free Another important factor affectings(r) is the disorder
energy. To see how each domain is deformed atl, we  strength. More systematic study of the decay law is left to
consider the local elastic stress, which is given gs  future work. In Fig. 5 the degree of asymmetdyis also
= u(du;+d;u;i— aQ;;) from Eq. (7). After some calcula- shown. With increasing the magnitude of the elastic interac-
tion, its variance in the mechanical equilibrium is obtained agion it approaches to the upper limit 1/4 as expected.
Finally we discuss the effect of random internal stress
<Ui2j>:2M2a2<Q§>- (11) arising from microscopic heterogeneities in the network
structure, which are intrinsic to ge[49]. We restrict our
In the elasticity-dominated limit, the variance of the quantitydiscussion to the case=1 with small internal deformations.

Yoy = du;+ g;u;— aQ;j vanishes due to the factdQ?2) In the expansion of the elastic free energy with respect to

in Eq. (11), which means that each part of the system isV U, there will arise an additional term,

elongated by ¥ a/4 (=\,,) times along the local director.

This, together with the numerical result on the mechanical Au;

response, supports the following simple picture: In the poly- AFeI,R:f drRij——, (12
domain state each domain is uniaxially elongated \yy !
times along the local director, and thus the elastic free energy
is equal to that for the monodomain state\at\,, (Fig. 3.  WhereR;; is the Gaussian random stress witR;;(r))=0
The P-M transition in the region <A<\, proceeds via and with
rotation of domains and does not change the elastic free en-

ergy.

Next we present numerical results on the polydomain
structure at =1, which was studied through the correlation
functionG(r)=2(Q;;(r)Q;;(0)) and the degree of structural
asymmetryA=(Q3)—(Q3). To accelerate the computation
of the elastic field we assumed a weak couplirg 0.1, and
solvedSAF, /du=0 under the constrair - u=0 using fast
Fourier transform instead of the relaxation method above.

The amplitude of the thermal noise was set constant in an

initial stage and then gradually reduced to zero at a constant

rate. The correlation function is computed for the final state

and averaged over 20 independent runs for each set of pa-
rameters. Runs were sufficiently long to insure that the initial 0 . . :
configurations with uniform and random orientations give 0 10 20 30
indistinguishable results foG(r). Shown in Figs. 4 and 5 MOlz

are the correlation function and the correlation lengtte-

fined byG(R)/G(0)=1/2. The elastic coupling increases the  FIG. 5. Top, correlation lengtR; bottom, structural asymmetry
correlation length without qualitatively affecting the form of A=(Q3)—(Q3).
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(Rij (DR (=) =V18 811+ Vo 81 80 + 81 8ji). does not explicitly include the orientational degree of free-
(13  dom.

o L To summarize, we have numerically obtained a soft me-
Eliminating the elastic field from\F¢;+AF g we have a  chanical reponse during the P-M transition. It originates from
new interaction termu [ drRQ;, whereR? is defined using  structural self-organization of domains due to the long-range
the shear componeﬁiﬁz Rij — R«d;j /d by an equation par-  elastic interaction, and should be distinguished from the soft

allel to Eq.(8) as elasticity[2,21] of uniformly oriented networks. The elastic
s ] s s contribution to the stress is slightly negative in the transition
RT(Q) =siN(2@) Ry, () — cog2¢) Ry (a). (14 region. We have found a positive disorder contribution to the

Treating this interaction as a weak perturbation 20, we stress. The elastic interaction is found to increase the corre-
9 P ' lation length. We have demonstrated that random internal

can see that it renders the equilibrium correlation length fi-

nite even in the absence of the disorder free enéByyWe stress acts as a random field on the director. Further experi-
. . - €8y mental and theoretical studies are necessary to examine its
mention that Golubovicand Lubensky[15] discussed an- y

. - - ._relevance to real polydomain textures.
other mechanism of long-range—orientational-order breaking oy

due to random stress. Their argument is based on the obser- The author gratefully acknowledges Professor A. Onuki
vation that the amplitude of thermal fluctuations around afor helpful discussions and a critical reading of the manu-
uniformly aligned state diverges. Its relevance to the preserdcript, and Dr. E. M. Terentjev for valuable comments on our
case of nematic networks is limited in that their free energyrelated work.
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